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In this paper, we will present a detziled analysis of the way in
which resonances may affect the angular distribution of the products
of reactive collisions. To do this, we have used an approximate

" three-dimensional (3D) quantum theory of reactive scattering (the
Rotating Linear Model, or RLM) to generate the detailed scattering
'1nformation (S-matrices) needed tu compute the angular distribution
of reaction products. We also employ a variety of tools, notably
lifetime matrix analysis, to characterize the importance of a
resonance mechanism to the dynamics of reactions. As a result, we
hope to gain insight into how the resonant component of the
scattering mechanism is manifested in the angular distribution of
reaction products. Applications of these techniques to two reactive

systems, F+H, and He+H,*, will be reviewed.
The Rotating Linear Mode!l

The study of quantum effects such as resonances in atom-molecuie
reactions has heen largely confined to coupled-channel calculations
for collisions constrained to collinear geometries. Progress in
quantum reactive scattering techniques is reviewed periodically
(1-4). A few three dimensional (30) quantum calculations of simple
reactions, some more approximate (5-21) than others (22-23), have
seen resonance features in reaction dynamics, and with the
increasing sophistication and sensitivity of molecular beam
experiments (24-27), it has become evident that the angular
distribution of reaction products is 1ikely to be the most sensitive
observable manifestation of resonant contributions to reaction

mechanisms.
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Coupled channel methods for collinear quantum reactive
calculations are sufficiently well developed that calculations can
ba performed routinely. Unfortunately, collinear calculations
cannot provide any insight into the angular distribution of reaction
. products, because the impact parameter dependence of reactioa
probabilities is undefined. On the other hand, the best approximate
3D methods for atom-molecule reactions are computationally very
intensive, and for this reason, it s impractical to use most 3D
approximate methods to make a systematic study of the effects of
potential surfaces on resonances, and therefore the effects of
surfaces on reactive angular distributions. For this reason, we
have become int2rested in an approximate model of reaction dynamics
which was proposed many years ago both by Child (28), Connor and
Child (29), and by Wyatt (30). This Rotating Linear Model (RLM) of
reactions is in some sense a 3D theory of reactions, because the
1ine upon which reaction occurs is allowed to tumble freely in
space. A full three-dimensional theory would treat motion of the
six coordinates (in the center of mass) associated with the two
vectors ; and ﬁ which specify the internuclear diatomic axis and the
atom-molecule separation réspectively. In a space-fixed frane,
these vectors have polar coordinates (r,8',4') and (R,6,4). In the
RLM, two degrees of freedom are eliminated by requiring the pelar
coordinates of the v and ﬁ vectors to .oincide. The Hamiltonian for
this system treats the four degrees of freedom associated with the

coordinates (R,r,0,6). As a mode! for angular distributions for
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reactive collision dynamics, the RLM possesses two attractive
features. First, the angular degrees of freedom are handled in a
partial wave expansion in the total angular momentum index 2, which
introduces an impact parameter into the theory. Second, the RLM
coupled-channel equations for each partial wave, when expressed in
either Cartesian, polar, or hyperspherical coordinates, are
identical to those of a purely collinear formulation, with the

addition of an effective centritugal potential

2u( R24p2 )

to the collinear potential energy surface for reaction.
Consequently, the solution of the reaction dynamics in the RLM is
only as difficult in practice a; solving a family of collinear
problems, one for each partial wave. In enforcing asymptotic
boundary conditions, we use spherical Bessel functions and ignore
the centrifugal zero-point motion 1/(R%+r?) in Equation 1.

The obvious defect of the RLM is that it neglects motion of the
; vector relative to the E vector. Asymptotically, the neglected
degrees of freedom describe the rotational motion of the diatomic,
and in the intaraction region, describe che internal bending of the

collision complex. Since the model only samples the collinear



«8a

projection of the entire potential hypersurface, one would expect
RLM to be most reliable for those reactions which proceed through
strongly hindered linear collision intermediates. In order to
improve the quantitative aspects of the dynamics, especially in the

reaction threshold region, we have added a bending correction to the
| RLM, in the same spirit as described earlier (g;ggg) for other
models. The model thus generated is called the Bending Corrected
Rotating Linear Model (BCRLM), and the results we describe here will
211 be derived from this model. The details of the bending
correction are described in an earlier publication (35).

In a series of recent papers (35-38), we have used the BCRLM to

examine the manifestation of resonances for several reactions,

including

FoH,(v) » HF(v') + H

H+H2(v) + Hz(v') + H

and several of their isotopic variants. In these papers, we have
considered the importance of quantum effects, especially resonances,
upon integral and differential cross sections and upon rate
constants for these reactions. The hope is that these approximate
results contain many of the important features of the more accurate

theoretical methods. At any total scattering energy E, elements of
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the multichannel S-matrix in the RLM are labelled by the total
angular momentum index £, and by the initial and final vibrational
quantum numbers v and v'. Equations for physical observables in the
. ﬁLM have been given previously (28-30), and we on]& summarize the
finai results here, in order to establish a common notation. The
opacity function gives the impact parameter dependence of the

reaction probabilities at fixed E, so that
£ L 2
Pyt (E) =[S, (B)]" (2)

where the impact parameter is related to the angular momentum index
by the semiclassical expression bk = (2+1/2), and k is the
translational wavenumber. The angular distribution of oroducts of

reaction I,,+(8) is the differential cross section

do,.(0,03E)/dn = |f, (8,0:6)|% = 1 ,.(0) (3)

where the scattering amplitude is

£y0(0,036) = (20k)7 ) (20+1)(8,, -5, (E) )P, (cose) (4)

The integra*ad cross section is

o, (F) = 2 [ 1(0)stnede = vk~ ) (2+1)PY (E) (5)

A1l angular distributions rported in this paper are calculated
using Equations (3) and (4) above. However, in interpreting fea-
tures of the angular distributfon, it is often instructive to appeal

to the elements of the classical formula for angular distridutions



bP (b)

I, = vv'
v (e) s"nelgeEE!l (6)

In Equation (6), 6(b) is the classical deflection function, and
' specifies the angle 6 at which the particles separate after a
collision at an initial impact parameter b. The deflection function

has the quantum analog

d Arg(st ,(E))
8q(%) = T (7)

where Arg(z) is the phase angle of the complex number z. Equation
(3), (4), (6) and (7) make it clear that the shape of the angular
distribution of reaction products depends both on the magnitudes and

phases of the elements of the S-matrix.

Analysis of Resonances

Resonances modify what would have otherwise been the energy and
impact parameter dependence of the phases and magnitudes of the
S-matrix element~. Resonances therefore alter the shape of the
angular distribution function. Kuppermann (39) has recently
reviewed many of the tools which can be used to characterize
resonances in single and multichannel problems. The andlysis of
resonances in a multichannel problem is simplest if one assumes
(glzgg)'the isolated narrow resonance conditions (INR), in which a
resonance 1is due to a single simple pole of the S-matrix located at

energy £ = Ep-1r/2 in the complex plane. It is assumed that the



background or direct component of the scattering has a much slower
energy dependence than the resonant component, which is equivalent
_.to requiring that the resonance width T be small, and that the pole
1ie close to the real axis. The slowly varying background
‘contribution condition will be compromised if there is either a new
channel threshold near the resonance energy Eg, or if there are
other nearby (overlapping) resonances.

The effect of resonances on angular distributions in reactive
scattering can be effectively modeled if one can successfully
separate the multichannel S-matrix into its background and resonant

components, so that
S = S0 + SR , (8)

where it will be understood in what follows that this analysis is
done at each partial wave index 2. Invoking the INR conditions,
Equation 8 can be written in a generalization of the singleQChanne]

Breit-Wigner form

r
- <1/2 vy 1/2
S =55'°(1 - X)) 8 (9)

with z=Eg-ir/2. For N open channels, cuiumn vector y 1s composed
of N real numbers, such that yTysT, Comparing Equations (8) and
(9) makes it clear that the complete characterization of the
resonant and background parts of the S-matrix requires knowledge of
the resonant partial widths (Spl/2y), where

‘1(53/27)(51/27)T

0
S * -z (10)

-



A1l resonances are necessarily characterized by the lifetime of the
compound state, and Smith's (47) definition of the lifetime matrix

is

Q = ihs 3o~ (11)

If we substitute Equation (7) into Equation (11), we obtain a direct

expression for Q in the vicinity of the resonance

n(sg’ ) (sg’ 23"

Q= 12)
(E-Eq)° + /4 (

In deriving Equation (12), we have assumed Sg to be independent of

E. It is also convenient to express Q as
hr t

= 13
) (E-Eg)2 +1%/4 w )

where the unit vector w is

w = 117, (14)
Equation (13) tells us two things about the lifetime matrix near an
INR: (1) the trace of Q has the expected single-channe)

Lorentzian form

hr
(E-Ep)? + r¢/8

Trace (Q) = (15)

and (2) that all the eigenvalues of Q are zero except for one (Q is

a rank 1 matrix). Furthermore, the eigenvector of Q corresponding



-10-

ideaily to the nonzero eigenvalue is the unit vector w defined in
Equation (14). Combining Equection (14) and (10) gives a direct
expression for Sp in terms of the appropriate eigenvector of Q,

namely

S - 1PWT

R = (16)
E-Ep + ir/2

Combining Equation (16) with Equation (8) allows a determination of
the background S-matrix So, and from 50 at each pariial wave one

can calculate the angular distribution in the absence of a
resonance, Equation (3). In practice, the breakdown of the INR
conditions, especially the energy dependence of Sy, compromises

the practical application of the preceding discussion, but as we
hope to show, the scheme outlined nevertheless seems quite useful in

analyzing resonances.
Resonance Effects On Quantum Deflection Functions

In a recent paper (37) we explored the effects of resonances on the
phase behavior of individual elements of the S-matrix, with
particular attention paid to the guantum deflection function,
defined in Equation (7). Following in the spirit of Child's (43)
analysis, we assume the partial wave cependence of the resonance

energy to be

Ex(2) = Eg(0) + Ba(2+1) an
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and further assume the resonance width has a quadratic depe~dence on

L

2,
7

T, = Ty (l+agsbe (18)

If we then assume that the phase behavior of a single off-diagonal

element of the S-matrix is

2
£ _ ek vv'!

va' B |va.le ’ (19)
stoa st (background) + st (resonant) (20)
vv! vy! 9 vv! ' =

. r£/2 .
tan & . (resonant) = LIOE (21)

then Equations (17-21) lead to the foliowing expression for the

behavior of the quantum deflection function near a resonance,

1 ro(a+2bz)(ER-E) - Brz(22+1)

0
L
H e (Eq(2)-E)2 + T2/4

(2) = 00,

Oy (22)
Note in Equations (19)-(22) that there is a factor of twc difference
assumed in the dependence of the off-diagonal resonant phase
behavior from that of single channel behavior. This assumption
follows from Equation (9). In an earlier paper (37), we showed thet
Equation (22) (with a=b=0) was remarkably good in modeling the

resonant behavior of the deflection function.

Application to Anqular Distributions

In this seLtion, we present an application of the techniques

described in the previous sections to the angular distribution for
the reaction
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F+H,(v'=0) » HF(v'=2)+H

A series of calculations, using the BCRLM, was performed on the
‘M5 surface (48), as reported earlier (37). Here we w111'concentrate
on the angular distribution at a fixed total energy E=1.807 eV
‘(measured from the minimum of the HF vibrational potential for
asymptotic H+HF geometries). The initial relative kinetic energy of
reactants at this total energy is 0.162 eV (or 3.73Kcal/mol). We
show the impact parameter dependence of the magnitudes and phases of
the appropriate elements of the S-matrix in Figures (1) and (2).
Figure (1) shows the opacity function, Py (%) vs. & (see
Equation (1)), and Figure (2) shows the quantum deflection function
©g2(2) vs. & (see Equation (7)). The presence of a resonant
contribution to the reaction mechanism is evident as a dip in the
deflection function over the range of £ values 12-20. The resonance
is also manifested in the opacity function of Figure (1) as a
significant enhancement (see later) of the reaction probability
over the same range of % values. The angular distribution which
results from these S-matrix elements {is shown in Figure 3.

Let us now analyze the resonance contribution to this angular
distribution more closely. From Figure 2 it is evident that at
E=1.807%eV, the resonant contribution to the deflection of products
is greatest near 2=16. We therefore show in Figure 4 a plot of the
eigenvalues of the 2=16 11fetime matrix (Equation (11)) as a func-
tion of totalenergy E. Over this range of total energies, there are
are five open channels in the S-matrix (v=0 ot reactants and
v'n0,1,2,3 of products). It is clear in Figure 4 that a Lorentzian

shaped feature is indeed centered near E=1.807 eV in one of the
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eigenlifetime channels. If this feature is fitted to the form of

Equétion (17), with a quadratic background behavior, the resonance

energy Eg(16) and width 'y can be determined. Values of Eg(%)

and Ty for other & values are determined similarly. In Figure 5,

‘we show a plot of the energy dependence of the magnitudes of the

elements of the eigenvector of Q corresponding to the eigenvalues
with the Lorentzian profile. These are related to the partial
widths by Equation (14). Figures 4 and 5 give an indication of the
degree of validity of the INR conditions for this problem. Although
one of the eigenlifetime channels shows the resonance feature much
more strongly than the others, the other eigenvalues are neither
zero over the width of the resonance, nor are they even constant,
Similarly, in Fig. 5, we see that the resonant partial widths are
not necessarily slowly varying with energy over the width of the
resonance,

Using the data of Figure 5 to generate the partial widths, we
calculate the resonant part of the S-matrix using Equation (16), and
the background S-matrix using Equation (8). Because the elements of
the w vector in Equation (16) come from the diagonalization of Q
calculated using Equation (11), we obtain w with an arbitrary phase
e-19, possible choices of © are determined oy requiring the
background S-matrix Sy be unitary (in addition to being
symmetric). At energies E=Ep(%), only one value of o makes Sy
unitary, and at other values of E, there are two values of E which
suffice. The physically satisfactory root ts the one for which the
resonant behavior of Sg is eliminated (the other root tends to

acrentuate the resonance). An example of this procedure is

demonstrated in Figure 6, where we have plotted |Ség.(E)| vs. E.
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The solid 1ine shows the magnitudes of the full S-matrix elements,
the solid circles show the background S-matrix elements
corresponding to the physical root, and the open circles show
béckground S-matrix elements corresponding to the nonphysical root.
' Assembling the magnitudes of the background S-matrix elements
for the physical roots at all partial waves from £=0 to 18, we
_construct the background opacity function shown as the solid curve
in Figure 7, at E = 1.807 eV. The large dip in this opacity
function near 2212 is the result of the crossing of two efgenvalues
of the lifetime matrix in this range of &2 and E. The crossing
eigenvalues induce interactions between the eigenvectors and perturb
the calculation of thewbackground S-matrix. Consequently, we have
also used the opacity function given by the dashed 1ine in Figure 7
to produce an estimate of the backgcound angular distribution.
Furthermore, because of the practical difficulties with the
determination of the magnitudes of the background S-matrix elements,
we elected not to use the phases determined in this manner, but to
use phases from the deflection function analysis described earlier,
The sat of resonance energies is reasonably described by the form of
Equation (18) with Ep(0) = 1,7234 eV and B = 3.05x10-* eV, and the
%-dependence of the widths is adequately described by Equation (18)
with I'g = 0.031 eV, and a=b=3.11x10-%, We then use Equation

(22) to produce the background deflectior function egv.(z). and we
show results in Figure 8 as the solid curve. The dashed curve is
the full deflection function of Figure 2, shown for comparison.
Phases of the background S-matrix elements are determined, up to an

unimportant constant, by integrating eev.(z). Having determined a
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set of background 5-matrix elements, we calculate an angular
distribution due to the background scattering, shown in Figure 9 as
the solid curve. The dashed curve shows the angular distributica of
_ hs1ng the smoothed opacity function of Figure 7, and the dotted
curve reproduces the distribution of Figure 3 for comparison.

The effect of the resonance contribution to the angular
distribution in Figure 9 is twofold. The resonance (1) enhances the
intensity of the sideways peak, and (2) the position of the sideways
peak is shifted toward the forward direc*ion by approximately 20°,
an additional deflection which quantitatively agrees with the size
of the dip in the deflection function shown in Figure 8. There is
also a small reduction in the interference oscillations in the
furward direction. It is significant to ncte, however, that the
background angular distributfon is sideways peaked, as a consequence

of the generally increasing tendency of the oracity functions of

Figure 7 at 14 L.

Forward Peaked Angular Distributions

In the remainder of this paper, we wish to consider the conditions
which may lead to bruad, or even forward-peaked, angular
distributions of products at the reaction threshold. Such angular
distributions have been observed in recent F+H, beam experiments
(27), and within the context of the BCRLM, we have observed this

phenomenon in several systems.

F+H,. We see this sort of behavior in the reaction F+Hy(v=0) »
HF(v'=2)+H on a modification of the M5 potential surface due to
Truhlar, Garrett, and Blais (49). Tnis modified surface differs
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from the M5 surface in the following three qualitative ways: (1)
the new surface has a lower collinear barrier to reaction, (2) has a
softer bending potential in the entrance valley, and (3) has'a much
| lower adiabatic barrier in the exit valley for reaction into the

HF(v'=3) final state.

We show in Figures 10 and 11 a plot of the reactive
probabilities for this system, for reactions into HF(v'=2) and
HF(v'=3) respectively. While the qualitative shape of the
probability curves for reaction to HF(v'=3) resembles that of the M5
potential surface, there is an obvious difference in the dynamics
leading to HF(v'=2) products. At Tow partial waves, the reaction
into HF(v'=2) is suppressed relative to the M5 case, and at larger
partial waves, there is an obvious onset of resonance dynamics.
Presumably, the exit valley adiabatic barrier whtch is pr sent 1n
the M5 surface, but has been removed in this newer surface, is
replaced by a similar (but centrifugal) barrier at intermediate
partial waves, thereby restoring the resonance mechanism. The
effect on angular distributions is obvious. Figure 12 shows opacity
function plots at several energies, and Figure 13 shows the
corresponding angular distribution plots. The resonant mechanism in
this case is considerably stronger than for the corresponding M5
calculation, and the effect on the angular distributions is to
induce much stronger interference oscillations, since there are many
fewer partial waves contributing significantly to the reaction. In
the case of the reaction to produce HF(v'a3) on this surface, it is

evident that the v'=3 state of products participates more stronqly
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in the resonance mechanism, as can be seen in the angular
distributfon plots of Figure 14, The angular distribution shifts
_from backward to sideways peaked, and has noticeable interference
oscilla.ions at all erergies.

The F+H, reaction on this newer potential surface demonstrates
one way in which the BCRLM will produce an angular distribution at
the reaction threshold which is not smooth and backward-peaked. In
this case, the absence of a significant reaction probability for Tow
partial waves, and the appearance of a resonance feature at larger
partial waves, combine to produce an opacity function which peaks at
large partial waves, and hence an angular distribution which has a
pr;dominant forward distribution of reaction products. We have seen
results similar to these in the angular distribution for the

reactions F+D,(v=0) + DOF(v'=3,4)+D on this same surface.

ﬂ2ﬂ11° We performed a set of BCRLM calculations for the reaction
He+Ha* + HeH'+H using the DIM representation (50) of the potential
surface. A great many resonance features have been seen (51) in
the collinear reactive dynamics of this system, and many have bheen
identified with the attractive well which {is present on this surface
in the entrance valley. Because the bending potential precicted by
the DIM surface 1s very weak, the BCRLM dynamics (for the &=0
partial wave) resembles that of the collinear calculation. Reaction
probabi1ities for the raactiop He+H,*(v=3) + HeH*(v'=0)+H are shown
in Figure 15 for several partial waves. The predominance.of many

resonances in each partial wave is evident in the figure. As

written, this reaction is endothermic by 0.81 eV, but once the
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endothermicity is provided by the kinetic energy of reactants, there
is no barrier to the reactive process. Consequently, reaction
occurs from many partial waves at the reaction threshold. There is
iitt1e or no evidence of a centrifugal barrier to reaction
| appearing in the dynamics until the 2=15 partial wave. For this
reason the opacity function, at the reaction threshold, contains
contributions from a large number of partial waves, as can be seen
in Figure 16. The resulting angular distributions of products are
therefore quite broad, and show the effects of the multitude of
resonances through the very oscillatory nature of the distributions,
as is shown in Figure 16. Results similar to these, except for
reaction from other initial vibrational states of the H,* reactant
molecule, are qualitatively the same -- reaction from many partial
waves at threshold makes possible a very broad angular distribution

of products.

Summary
’

We have attempted to describe here the way in which resonances in
reactive scattering may affect the angular distribution of the
products of reaction. To do this, we have employed a simple 33
model of reactions, the Bend-Corrected Rotating Linear Model, and
have computed angular distributions for several reactive systems in
which resonances contribute to the scattering dynamics.

The most straightforward way to determine the effect of
resonances on angular distributions is to define a partition of the

angular distribution into its direct and resonant components. We
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described an attempt to do this for the reaction F+H,(v=0) -
HF(v'=2)+H at an energy where the angular distribution was
decidedly sideways peaked. In this analysis, we found the effect of
the resonant part of the scattering was to enhance the amplitude of
the sideways peak, and to shift the peak to a more forward angle.
The background angular distribution is still sideways peaked,
however, lending further support to t' e conclusion which we (36-37)
and others (52) have made earlier, th.. the presence of a sideways
peak in the angular distribution is not necessarily the signature of
a resonant process.

We have also sought to describe the conditions under which the
angular distribution of reaction products could be forward-peaked at
the reaction threshold, within the context of the BCRLM. Two
sources of this effect have been seen in our calculations, and the
essential feature which they have in cornon is that the reaction
must, at threshold, contain contributions from scattering at large
partial waves., In the example shown for the F+H, reaction on a
modificatton (49) of this M5 surface, a forwsrd peaked distribution
at threshold was seen to result from a resonant mechanism which is
absent in low partial waves, and becomes significant for larger
partial waves. In the second example, for the He+H,* reaction,
forward peaked angular distributions at threshold result from the
fact that the reaction proceeds without a barrier (other than that
resulting from the overall endothermicity of reaction). In the
He+H,* reaction, there are indeed many resonances which contribute
to the dynamics, but it is not clear that the angular distribution
would not be peaked in the forward direction evan in the absence of

the resonances.
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FIGURE CAPTIONS

_Figure 1. Opacity function, P{2) vs. &, tor the reaction F+H,(v=0) »
HF(v'=2)+H at total energy E = 1.807 eV. The peak near 2=14 is
characteristic of a resonance contribution to the overall reaction

dynamics.

Figure 2. Quantum deflection function, o(2), as defined by Equation
7, for the reaction F+H,(v=0) » HF(v'=2)+H at total energy
E=1.807 eV. The dip near 2=16 a manifestation of the resonance
nechanism, because the longer-tived collision complex rotatec more
toward forward angles.

.
Figure 3. Angular distribution, or differential scattering cross
section for the BCRLM reaction F+H,(v=0) +» HF(v'=2)+H at total
energy E = 1.807 eV.

Figure 4. Eigenvalues of the collision lifetime matrix Q (see
Equation 11) for the 2=16 partial wave of the F+H, reaction. The
resonance near total energy E = 1.8 eV is evident in one of the

eigenvalues,

Figure 5. Energy dependence of the magnitudes of the elements of the
eigenvector of Q corresponding to the resondnt eigenvalue, Near the
resonant energy E = 1,806 eV, the channels which participate most in
the resonance dynamics are clearly v=0 of the H, reactants and v'=2

of the HF products.
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Figure 6. Magnitudes of background S-matrix elements for the
reaction F+H,(v=0) +» HF(v's=2)+H, partial wave 2=16. The solid curve

shows the full S-matrix elements, and the open and filled circles

show two choices of background elements corresponding to the two
phase choices for the partial widths (see text). The open circles
are elements corresponding to a nonphysical root, the closed circles

correspond to the physical root.

Figure 7. Background opacity function for the reaction F+H,(v=0) +
HF(v'=2)+H at E = 1.807 eV. The solid curve is the direct result of
the extraction procedure discussed in the text, and the dashed curve

is a smoothed version,

Figure 8. Background deflection function for the reaction F+H, +
HF(v'=2)+H at E = 1,807 eV. The solid curve removes the resonance
contribution using Equation (23). The dashed curve reoroduces the

full deflection function of Figure 2 for comparison,

Figu~e 9. Background angular distributions for the reaction
F+Hy(v=0) + HF(v'=2)+H at E = 1,807 eV. The solia curve used the
opacity function shown in Figure 7 &s a solid curve, and the
smoother, dashed curve shows the angular distribution which results
from the smoothed opacity function of Figure 7. The dotted curve

reproduces the full angular distribution of Figure 3 for comparison,



-2h=-

Figure 10, Reaction probabilities vs. energy for the reaction
F+H,(v=0) + HF(v'=2)+H on a recent modification (49) of the M5
_surface. Curves are shown for partial waves 2=0,5,10,...30. Note

the resonance feature which builds in at large partial waves.

Figure 11. Reaction probabilities vs. enerqgy for the reaction
F+H,(v=0) + HF(v'=3)+H on a recent modification (49) of the M5
surface. Curves are shown for 2=0,5,10,...30. Note the reduced

delay in the threshold for reaction at low partial waves.

Figure 12. Opacity functions for the reaction F+H,(v=0) =
HF(v'=2)+H on a recent modification (49) of the M5 surface. curves
are shown at several scattering energies. Note that almost all the
scattering at each energy arises from only a few, large & partial

waves.

Figure 13. Angular distributions for the reaction F+H,(v=0) +
HF(v'=2)+H on a recent modification (49) of the M5 surface. Curves

are shown at the same energies as Figure 12.

Figure 14, As {in Figure 13, angular distribution for the reaction
F+H,(v=0) + HF(v'=3)+H on a recent modification of the M5 surface.
The interference oscillations indicate that the HF(v'=3) channel

participates in the resonance “ynamics for this surface,



Figure 15. Reaction probabilities vs. energy for the reaction He +
Ho*(v=3) + HeH*(v'=0)+H on the DIM surface of reference (50).

_ Curves are shown for 2=0,5,10,...,30.

Figure 16. Angular distributions for the reaction He + Hy*(v=3) +
HeH*(v'=0)+H. Curves are shown at total energies (measured from the
minimum of the H,* entrance valley well) E = 1.0, 1.1, 1.2, and

1.3 ev.
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Figure 2. Quantum deflection function, ©(2), as defined by Equation
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Figure 3. Angular distribution, or differantial scattering cross
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enargy € = 1,807 oV,
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Figure 6, Magnitudes of background S-matrin alesents for the
reaction Foly(ve0) o MF(v's2)+H, partial wave del6. The solid curve
shows the full S-matrix elements, and the open and filled circles
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HP(v'w2Yol & E o },007 @V, The solid curve s the direct result of
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contribution using Equation (23), The dashed curva reproduces the
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opacity function shown in Figure 7 as a 3014d curve, and the
smoothar, dashed curve shows the sngular distribution which results
from the smoothed opacity function of Figure 7. The dotted curve
reproduces the full anguler distribution of Figure 3 for comparison.
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Figure 11. Reaction probabilities vi. enerqy for the reaction
FoHy(ve0) + NF(v'=3)¢H on & recent modification (49) of the M5
surface. Curves are shown for £00,5,10,..,30. Note the reduced

delay in the threshold for resction at \ow partial wavas.
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Figure 12. Opacity functions for the reaction FeNy(ve0)
WF(v'a2)¢H on » recent modificetion (49) of the WS surface. curves
ore shown at severa) scattering energies. Note thet almost 91l the

scattering ot eoch enerqy arises from enly & few, large 1 partia)
wives.
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Figure 1), Angular distributions for the resction Fel;(veD) » .
W(v's2)oH on o recent modificetion (49) of the W8 surfece. Curvs
are shown ot the same energies & Figure 12,



ANGULAR DISTRIBUTION (0-3)

-

]1l1f7TTIllI]1lel]

£=0.96

llJJJlleJlJJJlljl

0 60 120 180

ANGLE (deg)

Figure 14, As in Figure 13, anguter distribution for the resction
FeHy(ve0) o HF(v'e3)+H on o recent modification of the My surface.
The foterference osct)lations indicate that the ME(v'ed) channn)

participates in the resonance dynamics for this surface,
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Figure 15. Reaction probebilities va. enargy for the resction We ¢
Wy *(ved) o HeW*(v'e0)+H on the DIM surface of reference (30).
Curves are shown for 4¢0,8,10,...,30,
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